Current Issue : January-March Volume : 2026 Issue Number : 1 Articles : 5 Articles
This article discusses the automated control of dynamic loads in drive systems using the example of a wind turbine screw drive. A mathematical model was developed, including differential equations of system motion, the voltage balance of the electric motor, and transfer functions of the control system. The Laplace transform was applied to obtain the system’s frequency and time characteristics. Numerical calculations and simulation results are presented, demonstrating the system’s stability and the effectiveness of the proposed control method. The generated amplitude–frequency and transient response graphs confirm the system’s operability. The proposed approach enhances the reliability of the screw drive, reduces mechanical loads, and extends the equipment’s service life....
In recent years, artificial intelligence technology has developed rapidly, and the automobile industry has launched autonomous driving systems. However, autonomous driving systems installed in unmanned vehicles still have room to be strengthened in terms of cybersecurity. Many potential attacks may lead to traffic accidents and expose passengers to danger. We explored two potential attacks against autonomous driving systems: stroboscopic attacks and colored light illumination attacks, and analyzed the impact of these attacks on the accuracy of traffic sign recognition based on deep learning models, such as convolutional neural networks (CNNs) and You Only Look Once (YOLO)v5. We used the German Traffic Sign Recognition Benchmark dataset to train CNN and YOLOv5 to establish a machine learning model, and then conducted various attacks on traffic signs, including the following: LED strobe, various colors of LED light illumination and other attacks. By setting up an experimental environment, we tested how LED lights with different flashing frequencies and light color changes affect the recognition accuracy of the machine learning model. From the experimental results, we found that, compared to YOLOv5, CNN has better resilience in resisting the above attacks. In addition, different attack methods will interfere with the original machine learning model to some extent, affecting the ability of self-driving cars to recognize traffic signs. This may cause the self-driving system to fail to detect the presence of traffic signs, or make incorrect decisions about identification results....
Given the critical role of valve guides in the performance and lifespan of automotive engines, it is crucial to understand and improve their wear resistance. This study focuses on the wear resistance of powder metallurgy valve guides, aiming to systematically analyze the intrinsic relationship between their composition, microstructure, and properties. Three powder metallurgy valve guide samples with different compositions—specifically, a high-MoS2 Fe-C-Mo-Cu-S alloy (1.5 wt.% C, 1.9 wt.% Mo, 1.5 wt.% Cu, 1.4 wt.% S), a low-MoS2 Fe-C-Mo-Cu-S alloy (1.2 wt.% C, 0.3 wt.% Mo, 0.8 wt.% Cu, 0.2 wt.% S), and a Mo-free high-C-Cu Fe-C alloy (1.8 wt.% C, 5 wt.% Cu, 0 wt.% Mo, 0.01 wt.% S)—were studied using field emission scanning electron microscopy, metallographic microscopy, a reciprocating friction testing machine, and a 3D optical profilometer. The results show that the friction coefficient of the high-MoS2 Fe-C-Mo-Cu-S alloy is the highest at 0.5, the low-MoS2 Fe-C-Mo-Cu-S alloy is 0.25, and the Mo-free high-C-Cu Fe-C alloy is the lowest at 0.22. Since the minor wear amount cannot be accurately measured by the gravimetric method, the concave area of the wear-induced average roughness curve is employed to qualitatively indicate the magnitude of material loss: the area of the high-MoS2 Fe-C-Mo-Cu-S alloy is 2964 μm2, the low-MoS2 Fe-C-Mo-Cu-S alloy is 1580 μm2, and the Mo-free high-C-Cu Fe-C alloy is 1502 μm2. The hardness results of the material show that the high-MoS2 Fe-C-Mo-Cu-S alloy reaches 154 HB, the low-MoS2 Fe-C-Mo-Cu-S alloy is 134 HB, and the Mo-free high-C-Cu Fe-C alloy is 145 HB. The porosity results show a difference of about 2% among the three alloys. Based on the microstructure characterization results, it can be concluded that the Mo-free high-C-Cu Fe-C alloy—with high carbon (C) and copper (Cu) content and fine pearlite layers—exhibits excellent wear resistance: high C can improve the hardness of the matrix, while Cu can act as a lubricating phase to enhance the material’s wear resistance. In contrast, although the addition of MoS2 is intended to improve wear resistance, the irregular pearlite generated by MoS2 reduces the wear resistance of the high-MoS2 and low-MoS2 Fe-C-Mo-Cu-S alloys; among them, the high-MoS2 Fe-C-Mo-Cu-S alloy contains a higher amount of MoS2, and large chunks appearing in the tissue easily cause abrasive wear and aggravate material wear during friction. This study provides solid theoretical and practical support for the material selection and performance optimization of powder metallurgy engine valve guides: the identified intrinsic relationship between alloy composition (MoS2, C, and Cu contents), microstructure (pearlite morphology and second-phase distribution), and tribological performance establishes a clear theoretical basis for regulating the wear resistance of such components....
The steering linkage represents a key subsystem of any automobile, playing a direct role in vehicle handling, driving safety, and overall comfort. Within this mechanism, the tie rod and tie rod end are crucial for transmitting steering forces from the gear to the wheel hub. A typical issue that gradually develops in these components is the clearance appearing in the spherical joint, caused by wear, corrosion, and repeated operational stresses. Even small clearances can noticeably reduce stiffness and natural frequencies, making the system more sensitive to vibration and premature failure. In this work, the effect of spherical joint clearance on the dynamic behavior of the tie rod-tie rod end assembly was analyzed through numerical simulation combined with experimental observation. Three-dimensional CAD models were meshed with tetrahedral elements and subjected to modal analysis under several clearance conditions, while boundary constraints were set to replicate real operating conditions. Experimental measurements on a dedicated test rig were used to assess joint clearance and wear in service parts. The results indicate a strong nonlinear relationship between clearance magnitude and modal response, with PTFE bushing degradation identified as the main source of clearance. These findings link the evolution of clearance to the change in vibration characteristics, providing useful insight for diagnostic approaches and predictive maintenance aimed at improving steering reliability and vehicle safety....
This research focuses on vehicle Advanced Driver Assistance Systems (ADAS), with particular emphasis on Lane Keeping Assist (LKA) systems which is designed to help drivers keep a vehicle centered within its lane and reduce the risk of unintentional lane departures. These kinds of systems detect lane boundaries using computer vision algorithms applied to video data captured by a forward-facing camera and interpret this visual information to provide corrective steering inputs or driver alerts. The research investigates the performance, reliability, sustainability, and limitations of LKA systems under adverse road and environmental conditions, such as wet pavement and in the presence of degraded, partially visible, or missing horizontal road markings. Improving the reliability of lane detection and keeping systems enhances road safety, reducing traffic accidents caused by lane departures, which directly supports social sustainability. For the theoretical test, a modified road model using MATLAB software was used to simulate poor road markings and to investigate possible test outcomes. A series of field tests were conducted on multiple passenger vehicles equipped with LKA technologies to evaluate their response in real-world scenarios. The results show that it is very important to ensure high quality horizontal road markings as specified in UNECE Regulation No. 130, as lane keeping aids are not uniformly effective. Furthermore, the study highlights the need to develop more robust line detection algorithms capable of adapting to diverse road and weather conditions, thereby enhancing overall driving safety and system reliability. LKA system research supports sustainable mobility strategies promoted by international organizations—aiming to transition to safer, smarter, and less polluting transportation systems....
Loading....